September 1989

Made to measure Rob Smith 3
Cutting corners Tandy Clausen 4
The geometry of soap films and soap bubbles Cyril Isenberg 6
Passages 10
How much longer? John Mason 14
Reflections on learning Barbara Jaworski 16
Basics Mary Harris 18
Parallels 20
Curriculum topics through problem posing Marion Walter 23
Branches 26
Mathematics and modern art: Computer graphics Ulrich Grevsmühl 29
Letters 36
Notices 36
Work in progress 37
Reviews 38
GCSE mathematics and further education Peter Crayford 45

The ‘ones’ on p’71 ofMT127 and on p2 of this MT were designed by Patrick Keane
Artwork Zena Ginifer
First initiatives on the way to computer art were made by scientists and mathematicians who had the knowledge and the necessary apparatus available for producing aesthetic programmes, in North America and West Germany more than thirty years ago. Fascinated by the appeal of Lissajous' figures many experiments with mechanical and electrical oscillating systems were carried out, at first by employing mechanical plotters, later by the use of analog computers in the form of oscilloscopes. The first large exhibition of electronically generated graphics was shown in the USA in 1953 where photographs taken by Ben F. Laposky of oscillographs were presented.

In Europe an exhibition with a similar theme showing works of Herbert W. Franke was organized in 1959. In the sixties advances in computer art were made especially by a group under Max Bense in Stuttgart where the works of pioneers like Frieder Nake and Georg Ness reached international recognition. In the rapidly developing field computer artists at that time began to make use of digital computers, display monitors, fast printers, photocopies and computer controlled photographs, slides and films. New techniques were developed and perfected over the years. Today we find computer generated graphics, methods of picture processing, computer automated design, computer simulation and animation which also take in many fields of traditional art like sculptures, films and videos, choreography, poems and music [1]. One of the recent achievements, as demonstrated in the images of fractal geometry, has been that it was not only possible to create 3-D pictures of imaginary landscapes and other scenes in perspective but also to include the reality of time change and movement [2]. There have been, and there still are, many discussions about whether or not it is at all possible for art to be created with the help of a machine. Is computer art really art? When one considers the various points of view, it has to be borne in mind that computer generated graphics, for instance, which is dealt with in the following examples, is not a style of art but rather a method of employing certain instruments. It is not relevant what the artist can do with the computer but rather what messages, ideas and feelings can be transported with this medium. New technologies mean both new possibilities for creating works of art and also new messages; both a new syntax and a new semantics. For this reason the history of computer art is closely related to the development of the technology and one can be curious about what new media of communication will be invented in the future.

BECK & JUNG

Both born in Lund, Sweden, 1939. Live in Lund.

Holger Bäckström and Bo Ljungberg have been working together since the mid-sixties under the name Beck & Jung and belonged to the first group of artists who turned to computer technology for new inspirations. They started to make computer pictures in colour in 1972 with the help of the *Colour Ink Jet Plotter* which had been developed at the University of Lund. This plotter can plot points, lines and areas. A plot-head containing a jet nozzle for each of the three primary colours yellow, red and blue is used to produce 17,576 different colour shades in a special raster system. It can colour more than 100,000 separate points per second, 25 points per square millimeter, each point having a diameter of 0.2 millimeter.

Since 1980 Beck & Jung have investigated the world of colours by applying the Colour Ink Jet Plotter to their *Chromatic Cube*. This cube is a model for the systematization of colours. The colours black (BL) and white (W) are placed in the opposite vertices of a cube. Then the primary colours red (R), yellow (Y) and blue (B) are arranged in the adjacent corners around the white pole (W), and correspondingly green (G), orange (YR) and violet (BR) around the black pole. By this all complementary colours, ie red and green, are situated in opposite vertices of the cube. The edges of the cube are divided into 17 parts.
Activity 1: Permutational combinations
Beck & Jung have created many versions from the Chromo Gube by removing or moving some of the 4913 small cubes. Two of these, *Hole in One (1980)* and *Puno (1980)*, are reproduced here, unfortunately in black and white only. Show that the total number of versions is 24913.

Activity 2: Dragon graphs
The dragon function received its name from the shape of its graphs which look like stylised dragons. Bach graph is generated by a recursive process and arises from its predecessor by replacing the sides by...
right-angled \(V\)'-shapes in alternating orientation. Consequently, the sides are shortened by a factor of \(1/\sqrt{2}\). As each graph consists of two congruent parts which can be mapped onto one another by an anticlockwise rotation of 90° around the centre of the graph, a paper folding method suggested by the physicist J E Heigway [6] may be applied to produce the shapes of the first few dragon graphs but not the actual length of the sides. In this method a strip of paper is repeatedly halved by folding in the same direction. If after \(n\) folds the paper strip is unfolded and angles of 90° are established in each of the corners, a dragon graph of depth \(n\) will be formed.

Write a recursive computer program which generates dragon graphs of given depths.

These three graphics by H W Franke are all based on a mirrored version of the dragon graph of depth 7. Whereas the first one shows the graph itself but with the last side of the last \(V\)'-shape missing, in the second one the straight lines are replaced by curved elements. In the third graphic Drakula 12A/1971 (see front cover of this MT), so-called super-signs are created by superimposing on the original second graph another one which has been rotated by 180°.

MANFRED MOHR

Born in Pforzheim, West Germany, 1938. Lives in New York.

Manfred Mohr started to employ the computer and the plotter as tools for carrying out his works in 1969 when he gained access to the computer centre of the Meteorological Institut in Paris during his years as an arts student. Since then he has developed various algorithms for generating two-dimensional iconic signs [7].

Activity 3: Generation of être-graphiques

Consider an affine projection of a skeletal cube. If the 12 edges of the cube arc taken away one by one, the 3-D illusion will gradually dissolve and 2-D signs, so-called être-graphiques, will be generated. Find the number of combinations for the cases that 0, 1, 2, ..., or all 12 edges arc missing and show that there are 4096 possible être-graphiques which can be obtained from a cube this way. Write a computer program to draw an affine projection of a cube which systematically generates all 4096 être-graphiques A few of these are depicted in Mohrs' work P-185-D (1976, ink on paper, 3 parts, 40 x 40 cm each) [8].

In his work phases *Cubic limit* and *Divisibility* Mohr has extensively investigated the skeletal structure of the cube as a generator of 2-D signs by applying various methods and procedures. This work was extended in *Dimensions* (1978-79, 1987-88) to the 4-D hyper-cube where at first the graph, later 4-D rotations were used to generate signs and shapes [7,9].

Cartesian objects of various dimensions like the point (0-D), the straight line (1-D), the square (2-D), the cube (3-D) and the 4-D hyper-cube can be represented by two-dimensional graphs where the binary numbers of the vertices account for the spatial relationships: a change in digit indicates a change in dimension.
The construction of a 4-D hyper-cube is based on a set of eight cubes put together in such a way that each edge of a cube simultaneously belongs to three different but adjacent cubes. Note that the spatial representation of the 4-D hyper-cube is topologically equivalent 10 its graph.

Activity 4: Diagonal paths In the graph of a cartesian object a diagonal path is by definition a path which leads from one point (vertex) to the diagonally opposite point passing through each of the given dimensions just once. In two dimensions (a square) there are two diagonals, each having two diagonal paths.

In three dimensions (a cube) there are 4(= 22) diagonals, each having 6 (= 3 x 2) diagonal paths. In four dimensions (a hypercube) there are 8 (=2³) diagonals, each having 24 (= 4 x 3 x 2) diagonal paths. These 192 paths have been drawn in Mohr’s work P228 (1978, ink on paper, 8 parts, 55 x 41 cm each. Note that for this purpose the hexagonal shape of the graph of the 4-D hyper-cube has been transformed into square format whilst maintaining the inherent properties of the structure. Here only the 24 paths belonging to the diagonal 0000-1111 are depicted where the binary numbers indicate the passage through the four dimensions [9].
Consider the graphs of a square, a cube, and a 4-D hyper-cube. With the help of a computer program find for each of the diagonals all the possible diagonal paths by calculating the changes in binary digits and drawing the corresponding paths. For a 4-D hyper-cube, for instance, the diagonals are given by 0000-1111, 1000-0111, 1100-0011, 1110-0001, 0100-1011, 0101-1010, 0010-1101 and 01 10-1001.
In this issue:

Soap films and bubbles
How much longer?
Made to measure
Reflections on learning
GCSE and FE
Computer graphics